
Supplementary Figure 1: Mapped flat spots, meltwater channels, crevasse
squeeze ridges, eskers and outwash fans. A. Mapping of Site 1 (extent of Fig.
1B). B. Mapping of Site 2 (extent of Fig. 2A). The black dotted line is the ridge crest
in both cases.



Supplementary Figure 2: Scatter plot showing the relationship between
channel cross-sectional area (m2) and lake area (km2).



Supplementary Figure 3: Scenarios for proglacial lake formation with dif-
ferent ice configurations (A-C). It is only possible to pond a lake that covers the
entire area of the flat spot if ice completely blocks the NE margin of the basin (A),
otherwise water is able to drain out to the east (B) or north (C). It is difficult to
envisage ice wrapping around the basin in this manner.



Supplementary Figure 4: Ground penetrating radar profile 15 (raw in A,
annotated in B) across subglacial meltwater channel at Site 1. See Figure
1B for location of radar profile. Note the strong reflectors that outcrop roughly at
the base of the channels. We interpret this to be bedrock. This suggests that the
channel was cut primarily into sediment.



Supplementary Figure 5: Ground penetrating radar profiles 1-5 (raw in A,
annotated in B) across flat spot at Site 1. See Figure 1B for location of radar
profiles.



Supplementary Figure 6: Raw ground penetrating radar profiles 39-44
across flat spot at Site 2. See Figure 2A for location of radar profile and Figure
2B for interpretation.



Supplementary Figure 7: Generalised subglacial channel flow. It consists of
an incision of depth hi upwards into the ice, and an incision of depth hs downwards
into the sediment; the latter is formed by erosion of the sediments, and the former by
frictional melting of the ice.



Supplementary Figure 8: Ice roof elevation in metres as a function of
channel depth in metres, based on (6). It uses values V = 150 m s−1, Q = 50
m3 s−1, r = 0.95, and values of χ = 0.8 (upper curve) and χ = 1.2 (lower curve).
Channels exist for small volume and sediment fluxes, but eskers or tunnel valleys
develop at larger fluxes, depending on the stiffness of the till. The lines hi = h
(marked R) and hi = 0 (marked C) indicate pure Röthlisberger channels and canals,
respectively.



Supplementary Discussion

The observations in Alberta are consistent with the idea that subglacial water flow
ponds in lakes upstream of topographic ridges, and then drains through channelised
flow for several kilometres downstream. It is consistent with our knowledge of other
subglacial lakes that drainage occurs sporadically in subglacial floods1−4, and we
shall assume this is the case. This is likely to be the case deep under the ice sheet,
as subglacial meltwater production is unlikely to be sufficient to fuel a permanent
drainage channel. As the margin retreats, surface meltwater may enhance the basal
water flow, but sporadic floods may still represent the normal drainage behaviour5.

Efforts to provide a theoretical description of drainage below ice sheets have been
made by, for example, Alley6, Walder and Fowler7, Ng8,9 and Creyts and Schoof10, but
there has been little progress in describing the mechanisms whereby channelised flow
may occur either as canals incised into the sediment, or as Röthlisberger (R) channels
incised into the ice. An exception is in the thesis of Ng (ref. 11, chapter 7), whose
detailed study provides an inspiration for the present discussion.The observations in
the present paper appear to indicate that outflow from the lakes first occurs through
canals, but then there is a downstream transition to R channels, manifested either
through the disappearance of the canals, or in some cases by their mutation into
eskers, which are taken as indicative of late stage infill of an R channel.

Without providing a complete theory, we show that these observations are con-
sistent with what is presently theoretically known about subglacial floods, and also
with the rudimentary theory of drainage given by Fowler (ref. 12, pp. 699 ff.), which
we now summarise.

The geometry of the channels is shown in Supplementary Figure 7, and allows for
the possibility of either an R channel (hs = 0, hi > 0) or a canal (hi = 0, hs > 0,
or more generally a combination of both (hi > 0, hs > 0). In fact, there are further
possibilities, as it is only necessary that the total channel depth

h = hi + hs (1)

be positive; either hi or hs can be negative, and we associate the former possibility
with the ice squeezing down into the sediment, and thus forming tunnel valleys in
the way suggested by Boulton and Hindmarsh13, and the latter (possibly) with the
formation of eskers, as the sediment squeezes up into the ice.

Fowler (ref. 12, p. 701) generalises the classic closure equation of Röthlisberger14

and Nye15 to the two forms
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where N is the effective pressure at the ice/till interface far from the channel, and as
shown in Supplementary Figure 7, w is the channel width, and ṁi and ṁs are the ice
melt rate and the sediment erosion rate; ρi and ρs are ice and sediment densities, and



∆ρwi = ρw − ρi and ∆ρsw = ρs − ρw are their differences from the water density ρw.
The closure of both ice and sediment is represented by viscosities ηi and ηs, although
particularly that for sediment is likely an over-simplification of realistic granular flow
rheologies16. Both ηi and ηs will realistically depend on N , but in opposite ways:
As N increases, ηi decreases due to Glen’s law, but ηs increases as the yield stress
increases.

We assume the thermal erosion (melting) rate and sediment erosion rate are given
by the relations

ṁi = CiQ, ṁs = CsQ, (3)

the first of which equates the latent heat used to melt the ice wall to the rate of
potential energy release (stream power) of the flow, and the second is proposed by
analogy. The quantities Q and Qs are stream and sediment flow, and are related to
channel geometry by
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√
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3/2, (4)

which represent respectively a turbulent friction law and a Meyer-Peter and Müller
type bedload transport law. The constants C, Cs and Ci are given by Fowler12;
specifically, we take
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where Si is the ice upper surface slope, f is a friction factor, L is latent heat of
melting, and LE is a comparably defined ‘work of erosion’.

In conventional flood theory15,17, Q is determined by the refilling conditions in the
upstream lake, and in the present case Qs would be also. As the present aim is not
to provide such a flood theory, we simply assume that Q and Qs are prescribed. The
equations in (1), (2), (3) and (4) then provide seven equations for the seven unknowns
w, h, hi, hs, ṁi, ṁs and N , which can be simply solved in steady state conditions.

What is of interest is the dependence of hi on h, which itself depends on streamflow
Q, and also the dependence of N on h. After some algebra, we find
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and N is given by
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If we use values Si = 10−3, ηi = 1014 Pa s, f = 0.005, ρs = 2 × 103 kg m−3, then
typical values of the parameters are

V ∼ 140 m s−1, r ∼ 0.92, δ ∼ 0.08. (10)

The value of χ depends on the notional erosion work term LE, which is not well
constrained. We use the experimental results of Begin et al.18 to provide an estimate.

Their supply term B is the equivalent of
ṁs

ρsw
, and they estimate B ∼ 0.04 cm min−1

= 0.7 × 10−5 m s−1. This implies, for their values of ρs ≈ 1.5 × 103 kg m−3 and
w ∼ 0.25 m that ṁs ∼ 2.5 × 10−3 kg m−1 s−1. The estimate for LE then comes via
(3) and (5),

LE ∼
ρigSiQ

ṁs

∼ 30 J kg−1. (11)

(The factor 2 is omitted as the experiments were of a free surface flow.)
Typical estimates for ηs ∼ 1010 Pa s (ref. 19, table 2) suggest that ηs/ηi ∼ 10−4

while corresponding estimates for sediment flux20 suggest that Qs/Q ∼ 10−4. Indeed,
since (4) implies that

h =
hc

1−
(
Qs

κQ

)2/3
, (12)

where

κ =
K ′√
C

=
ρiKSi

√
f

2∆ρsw

∼ 2.6× 10−4 (13)

(ref. 12, p. 702), we require Qs/Q < κ. All these estimates combine to suggest
χ ∼ O(1). Given the uncertainty, O(1) values of χ are apparently feasible.

Supplementary Figure 8 indicates the way in which hi varies with stream depth
h. A given ratio Qs/Q determines h via (12), and for this h, the channel form largely
depends on χ (see equation (6)): for χ < 1, R channels are formed, while for χ > 1,
canals are formed.

The most obvious variation of χ defined in (7) is due to the variation of ηi and
ηs with N . As N increases, ηi decreases roughly as 1/N2 (according to Glen’s law),
while the sediment viscosity can only increase (and reach infinity at a finite value
when the yield stress is no longer exceeded). This suggests that χ is a strongly
increasing function of N , and thus that the form of the channel downstream of a
lake will depend critically on the profile of the effective pressure in the channel. In
particular, a downstream transition from canals to R channels is consistent with this
description if N is high (χ > 1) upstream, and low (χ < 1) downstream.

To assess this, we consider the elements of subglacial flood theory. This is de-
scribed by Fowler (ref. 12, pp. 742 ff.). The essence of the matter is that the hydraulic
gradient in the stream can be written in the form

τ
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where (cf. equation (4.8) of ref. 12) τ is the shear stress in the stream flow and R ≈ h
is the hydraulic radius, which here is essentially the depth; x is downstream distance
and

Φ ≈ ρigSi (15)

(ref. 12, equation (11.10)) is the basic hydraulic gradient due to the ice surface slope
and the bed slope. During a flood τ increases and then decreases, so that at the end
of the flood,

∂N

∂x
≈ −Φ, (16)

and we will use this to describe the expected form of the channel shape. Note,
however, that (16) is only applicable within a relatively short distance of the lake;

beyond this
∂N

∂x
→ 0, and (14) simply implies τ ≈ hΦ.

One of the conclusions of the flood theory (e. g., ref. 21), and essential in explaining
their periodicity, is that although generally Φ > 0 (because the ice surface slope drives
the stream flow in the same direction as ice flow), Φ will be negative in the vicinity
of the lake (indeed, this is why there is a lake). In the present case, we associate
this region of negative Φ with the topographic ridge, but we then expect that Φ > 0
downstream of the ridge, and there is a fairly short region adjacent to the lake where
∂N

∂x
< 0. The length of this region can be estimated as X ∼ N/Φ, and using (15)

and (8) in the form
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∗, h∗ =
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this give

X ∼ h∗

Si

∼ 0.6 km, (18)

which is roughly consistent with the observed length scale of the stream features.
Over this length N and thus also χ decreases downstream, and this is consistent with
the observation of upstream canals making a transition to R channels downstream. It
is not necessary as χ can decrease downstream without making the transition through
χ = 1, but it is consistent.
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